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The performance of the recently proposed version of the reduced multireference (RMR) cou-
pled-cluster (CC) method with singles and doubles (SD), which employs a modest-size con-
figuration interaction wave function as an external source for a small subset of approximate
connected three- and four-body cluster amplitudes that are primarily responsible for the
nondynamic correlation effects, and which has been perturbatively corrected for the remain-
ing triples along the same line as in the standard CCSD(T) method (Li X., Paldus J.: J. Chem.
Phys. 2006, 124, 174101), referred to by the acronym RMR CCSD(T), is being tested by eval-
uating equilibrium spectroscopic constants for a demanding system of the beryllium dimer,
as well as by computing atomization energies for several di- and triatomics. The focus is on
the equilibrium properties, since it has been demonstrated earlier that the RMR CCSD
method corrects well for the nondynamic correlation in bond-breaking situations. We find
that in all the cases we have examined, the RMR CCSD(T) method does in fact improve the
performance of CCSD(T) even in the vicinity of the equilibrium geometry. For states possess-
ing a moderate multireference character, the improvement in computed thermochemical
properties relative to CCSD(T) amounts to a few kJ/mol, a meaningful amount when striving
for chemical accuracy.
Keywords: Coupled-cluster method; Externally-corrected coupled-cluster methods; Reduced
multireference coupled-cluster method; Correction for triples; Beryllium dimer; Atomization
energies; Size-extensivity; Ab initio calculations.
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An account of many-electron correlation effects is essential in any quantum-
chemical approach that strives for a quantitative description of the elec-
tronic structure of molecular systems and of their various properties. The
coupled-cluster (CC) approach1,2 that exploits the exponential Ansatz for
the wave operator plays here an important role, since it can efficiently ac-
count for the so-called dynamic correlation and, in turn, guarantees the
size-extensivity of the computed energies, a highly desirable property that
is lacking in truncated configuration interaction (CI) type approaches (for
reviews, see refs3–12; for a historical account, see refs13,14). The dynamic
correlation arises due to a large number of higher-than-doubly-excited
configurations that are missing in the standard single reference (SR) CI with
singles (S) and doubles (D), namely the SR CISD method, while these are auto-
matically accounted for through the disconnected clusters in the correspond-
ing SR CCSD method (or, in fact, at any level of truncation) via the
exponential Ansatz. In the absence of quasidegeneracy, these disconnected
components provide a satisfactory description of higher-than-doubly-excited
configuration state functions (CSFs), since the four- or higher-body connected
clusters are negligible in comparison with the corresponding disconnected
components.

In most actual applications that rely on a realistic ab initio model, char-
acterized by a large basis set of at least a triple-zeta quality, it is imperative
to truncate either the CI or CC expansion at the two-body level, lest the
computational requirements become overwhelming. In the CI case, the lack
of higher than doubly-excited CSFs is usually overcome by reverting to a
multireference (MR) version of the formalism, i.e., to MR CISD. This in turn
enables an easy account of the size-consistency requirement, which is nec-
essary for a proper description of various dissociation processes or, gener-
ally, of the degeneracy or quasidegeneracy of considered states, as well as
when handling transition states, radicaloid species, and open-shell systems
in general, not to mention the facility of spin or other symmetry adapta-
tion of CI approaches. Yet, CI approaches are not generally size-extensive, a
shortcoming that is usually corrected ex post via various Davidson-type em-
pirical corrections.

In contrast, the SR CC-type methods are automatically size-extensive at
any level of truncation. However, in view of the requirement that the single-
determinantal reference configuration they employ be nondegenerate,
these SR CC approaches often lack the size-consistency property. This
shortcoming is generally not essential when considering closed-shell molec-
ular systems in their equilibrium geometry, yet becomes crucially impor-
tant when we wish to describe various dissociation channels involving
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open-shell fragments, as is invariably the case when breaking genuine
chemical bonds and computing the respective potential energy surfaces
(PESs) or curves (PECs). An alternative way of striving for size-consistency
employs the unrestricted Hartree–Fock (UHF) reference which, however,
brings about the spin contamination into the formalism and causes other
problems (see, e.g., ref.9). While in the ideal case the higher-than-two-body
connected cluster components play a negligible role, so that the SR CCSD
method represents a very good approximation, their importance increases
with increasing quasidegeneracy of the reference. In fact, the connected
three-body clusters (T3) play already a non-negligible role even when con-
sidering molecular systems in their equilibrium geometry, and have to be
taken into account if we wish to achieve the “chemical accuracy” of 1 kcal/mol
(for more detail, see, e.g., ref.15).

Nonetheless, in standard situations, the size of the three-body connected
cluster amplitudes is sufficiently small, enabling their handling via pertur-
bation theory rather than by invoking a higher-level CCSDT method,
which soon becomes computationally unaffordable when considering
larger systems or basis sets. The resulting SR CCSD(T) method16,17 does in-
deed yield very accurate results, and is offen used as a method of choice, or
even as a benchmark, when a high accuracy is called for (cf. ref.15). Unfor-
tunately, with increasing quasidegeneracy that is brought about when con-
sidering nonequilibrium geometries with stretched genuine chemical
bonds, the CCSD(T) method invariably fails, yielding highly unrealistic po-
tentials with a huge “hump” and completely breaks down in the dissocia-
tion limit. We must also note that for some “delicate” molecular systems, as
represented for example by the BN molecule, CCSD(T) fails even at the
equilibrium geometry and predicts an incorrect ground state18. In this type
of systems, even the full CCSDT gives quantitatively unsatisfactory results
for the singlet–triplet separation19.

QUASIDEGENERACY AND CC APPROACHES

An obvious remedy for the quasidegeneracy and size-consistency problems
of the SR CC approaches would seem to be a transition to their MR version,
as in the CI case. Unfortunately, in contrast to CI, the generalization of the
SR CC methods to the MR case is highly nontrivial, and not even unambig-
uous, since it admits different types of MR CC cluster Ansätze (for more de-
tail, see, e.g., refs20–24 or reviews3,5,9,12). Moreover, these methods generally
suffer from severe problems, or even a complete breakdown, due to the
presence of the so-called “intruder states”. Even though these problems can
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be overcome to a large extent via various modifications, most recently, e.g.,
via the so-called C-conditions25,26 that enable the use of general model
spaces (GMSs), there has been a tendency to focus on one state at a time via
the state-selective or state-specific (SS) MR CC approaches (see, e.g.,
refs7,27–29). This is also the case of the Brillouin–Wigner version of the MR
CCSD method30, which a priori disregards size-extensivity, but avoids the
problem of intruders. Although some of the SS CC methods are designed to
handle any state associated with the chosen model space, most attention
has been paid to approaches that focus on the lowest state of a given sym-
metry species, including the ground state (see, e.g., SS MR CC approaches
due to Adamowicz, Piecuch, and co-workers31, which were also extended to
equations-of-motion (EOM) CC for excited states32).

At this stage we must also mention several remedies to overcome the fail-
ure of the CCSD(T) method in the presence of quasidegeneracy that have
been recently formulated and tested. Thus, Gwaltney and Head–Gordon33

proposed the so-called CCSD(2) method that computes the second-order
perturbative correction based on the CCSD as a reference, rather than using
the standard independent-particle-model (IPM) reference. This approach
yields improved results relative to the standard CCSD(T), assuming that
CCSD itself is well behaved, which is not always the case.

A much more universal and robust approaches to this problem were for-
mulated by Piecuch and co-workers29,34, as represented by the renormalized
(R) and completely renormalized (CR) CCSD(T), and lately by the so-called
CR-CC(2,3) method35. These approaches are based on the so-called method
of moments29,36 and represent a great improvement over the standard
CCSD(T), yielding qualitatively correct potentials. The only minor short-
coming, at least for the renormalized versions, seems to be the fact that in
the vicinity of the equilibrium geometry they produce slightly less accurate
results than does the standard CCSD(T) method, so that the computed har-
monic frequencies, and other equilibrium properties, are inferior to the
CCSD(T) ones. In the entire region of internuclear separations, however,
these methods represent an enormous improvement over the standard
CCSD(T) and produce results that closely approximate those rendered by
the full CCSDT method. Nonetheless, neither of these methods accounts
for connected quadruples.

EXTERNALLY-CORRECTED CC APPROACHES

In our work we have employed an alternative way of accounting for the
quasidegeneracy in the SR CCSD method (as well as for the related problem
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of intruder states in MR CC approaches of the state-universal (SU) type21;
see ref.37), which is based on the idea of the so-called external correc-
tions38,39. Thus, rather than relying on the perturbation theory when assess-
ing the contribution due to triples (and, possibly, quadruples), the exter-
nally corrected (ec) CC methods approximate the three- and four-body
connected cluster amplitudes by relying on some external source wave
function. Such source should be effective in accounting for the non-
dynamic correlation, computationally affordable, and its cluster analysis
(that is required to extract the desired cluster amplitudes) should be easy to
carry out.

The ecCC approach has a rather long history; it originated with the ex-
ploitation of the singlet-projected UHF (or PUHF) wave function as a source
of approximate four-body clusters40,41 (note that the PUHF wave function
cannot provide three-body clusters). This in turn led to the so-called ACPQ
(approximate coupled-pair theory with quadruples) method40, which is
closely related to the ACC(S)D approach pursued by Dykstra’s group42 and
to the so-called ACP-45 (approximate coupled-pair method accounting for
important exclusion-principle-violating or EPV diagrams, labeled as dia-
grams 4 and 5; see ref.43) as well as to other methods that emphasize the
special role played by the EPV terms, which also play an important role in
CEPA-type approaches. In fact, none of these CC methods actually evalu-
ates the approximate four-body cluster amplitudes and simply discards cer-
tain 1

2 2
2T terms (labeled as diagrams 1, 2, and 3 in ref.43) – actually,

computationally the most demanding quadratic terms. It was shown later
on when formulating the ACPQ approach40 that under certain conditions
these terms are cancelled by the terms arising from the T4 clusters. Only
later on were the t4 amplitudes actually extracted from the PUHF wave
function, resulting in the CCSD’ method41.

The inability of these approaches to account for triples was justly criti-
cized by Bartlett’s group44. Nonetheless, a number of actual applications to
various systems, including a rather demanding H4-type models as H4, P4,
etc.43, cyclic polyenes40,45 and other quasidegenerate systems42,46–48, as well
as the extension of the ACPQ method to SU MR CCSD 49, clearly indicated
the potential usefulness of these approaches, particularly in view of the fact
that they invariably produce results superior to the standard CCSD, while
being computationally more efficient, since they avoid the evaluation of
the most demanding algebraic expressions arising from the 1

2 2
2T term in the

CCSD equations. Very recently the attention has been again turned to this
topic, be it in the empirical-type handling of various quadratic terms in the
CCSD equations50, or in the so-called 2CC method51. The formulation of
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the latter provides yeat another viewpoint on this type of approaches (see
also ref.52 for related matters).

Realizing the importance of connected three- and four-body clusters in
the presence of quasidegeneracy, we have turned our attention to other
types of ecCCSD approaches, in which a relatively small subset of these
clusters was explicitly accounted for by extracting them from a suitable
external-source wave function via cluster analysis. These developments
were in particular stimulated by the realization that in the SR formalism
(i) the energy is fully determined by one- and two-body CC clusters or CI
coefficients and (ii) that SR CCSD equations arise from the full CC chain by
neglecting the t3 and t4 amplitudes that otherwise contribute via the T3, T4,
and T1T3 terms. Indeed, extracting the three- and four-body amplitudes t3
and t4, respectively, from the full CI (FCI) wave function – representing the
exact solution for a given ab initio model – and using them to correct the
CCSD equations for the absence of just mentioned T3, T4, and T1T3 terms,
we achieve the exact decoupling of the full CC chain of equations at the
pair-cluster level, and thus corrected CCSD formalism renders back the
exact FCI result.

In addition to earlier trials exploiting the PUHF wave function, we have
explored various other options as external sources, namely those that can
also provide approximate triples, in particular the VB, CAS FCI, and CAS
SCF wave functions38,53. An exploitation of the latter option was also inde-
pendently proposed by Stolarczyk39, though we are not aware of any actual
exploitation. The VB-type wave functions represent indeed an ideal exter-
nal source in view of their numerous desirable properties, in particular
thanks to the fact that they correctly describe all dissociation channels already
in its simplest perfect-pairing version. Unfortunately, there are no general-
purpose codes that generate VB wave functions at the ab initio level, so that
we were able to test this source only for semi-empirical PPP-type Hamil-
tonians54.

The CAS-type wave function, particularly the CAS SCF one, also repre-
sents a very desirable source, since it also brings with it molecular orbitals
(MOs) that are adapted to the problem at hand. This source also seems to
be essential for the recently proposed tailored CCSD (TCCSD) method55

(see also ref.56). However, to generate a suitable CAS FCI or CAS SCF wave
function requires the use of rather large active spaces, rapidly increasing the
cost.

Thus, the most appropriate external source for our purposes turned out to
be a modest size MR CISD wave function. As already implied above, there
exists a definite complementarity between the CC and CI descriptions in
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their ability to handle, respectively, the dynamic and nondynamic or static
correlation effects. Moreover, thanks to its linear nature, the cluster analy-
sis of the CI or MR CI wave functions is straightforward and computa-
tionally trivial57. A suitable choice of the model (or reference) space for MR
CISD then warrants a proper account of size-consistency. The t3 and t4 am-
plitudes that are extracted in such a way from the MR CISD wave function
constitute only a very small subset of all tree- and four-body amplitudes
(for example, in the simplest two-reference (2R) CISD case, the number of t4
amplitudes is the same as that of the t2 amplitudes), yet they represent the
most important terms of this type, are easy to handle computationally, and
account to an excellent degree for the nondynamic or static correlation
that is missing in the SR CCSD approach. Moreover, these three- and
four-body amplitudes implicitly account for all higher-order cluster contri-
butions, as is apparent from the fact that by using the FCI t3 and t4 ampli-
tudes, the ecCCSD yields again the FCI result. Needless to say that in the
N-electron limit, both FCI and full CC (FCC) yield an identical exact result.
The exploitation of the MR CISD wave function as an external source thus
led to the formulation of the so-called reduced MR (RMR) CCSD method27.
The usefulness of this approach has been demonstrated by a host of various
applications58 (see also ref.59).

We also note here that the same idea can be employed in the MR con-
text, particularly within the general-model space (GMS) CCSD, relying on
the so-called C-conditions enabling us to employ an arbitrary reference
space25,26, since the quasidegeneracy problem that we encounter in SR for-
malism is not unlike the intruder state problem of MR theories: both are
due to a strong interaction with states that are not included in the model
space M0 (which, in the SR case, is one-dimensional). Basically, there are at
least two ways to eliminate, or at least moderate, the undesirable effect of
intruders: (i) By employing a GMS, rather than the complete model space
(CMS), we can exclude references leading to intruders, and (ii) we can ex-
ploit external source wave functions. In this latter case, we consider an
M-dimensional GMS for SU CCSD, while exploiting an N-dimensional refer-
ence space MR CISD that accounts for intruders as an external source (N ≥ M).
Using the MR CISD three- and four-body cluster amplitudes for the M rele-
vant states, we then carry out ec SU CCSD. This approach is referred to as
the (N,M)-CCSD method60.

Clearly, the RMR or (N,M)-CCSD methods account for the missing
nondynamic correlation via a small subset of t3 and t4 cluster amplitudes.
However, this leaves a large number of such amplitudes unaccounted for.
Although individually such amplitudes (or corresponding CSFs) contribute
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very little, they provide a non-negligible contribution in their entirety, as
in the standard SR CCSD(T). We also recall that, in contrast to the four-
body terms, in which case the disconnected 1

2 2
2T clusters are much more

important (by one order in perturbation theory) than the connected T4
clusters, the reverse is true for the three-body terms (see ref.2). It thus should
be worthwhile to consider those connected three-body clusters that are not
accounted for via external corrections in RMR CCSD. These amplitudes should
be sufficiently small to allow a perturbative treatment as in the standard
CCSD(T) method.

We have thus recently formulated61 the triple-corrected RMR CCSD
method, designated by the acronym RMR CCSD(T) (see also ref.62). Some
preliminary tests clearly indicate the usefulness of this undertaking. It is the
objective of this paper to provide a further evidence in this direction. First,
however, we briefly outline the formalism we employ.

METHOD

The SR CC formalism relies on the exponential cluster Ansatz for the exact
wave function |Ψ〉,

| exp( )| ,Ψ Φ〉 = 〉 =
=
∑T T Tk
k

N

0
1

, (1)

where |Φ0〉 represents a single-determinantal IPM reference and Tk desig-
nates a k-body component of the cluster operator T. The Tk component is
then determined by the cluster amplitudes t i

k( ) ,

T t Gk i
k

i
k

i

= ∑ ( ) ( ) , (2)

each amplitude t i
k( ) being associated with the k-fold excitation operator Gi

k( )

that generates k-times excited IPM CSF | ( )Φi
k 〉 when acting on | ,Φ0 〉 | ( )Φi

k 〉 =
Gi

k( )|Φ0 〉 .
The cluster amplitudes are determined by solving the energy-independent

CC equations,

〈 〉 =Φ Φi
k H( ) | | ,0 0 (3)
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where H is a similarity-transformed Hamiltonian in its normal-product
form, HN = H – 〈 〉Φ Φ0 0| | ,H

H T H TN= −exp( ) exp( ). (4)

The energy relative to that of the reference is then fully determined by one-
and two-body clusters, namely

∆ Φ ΦE H T T T= 〈 + + 〉0 1 2
1
2 1

2
0| ( )| . (5)

Truncating T at the two-body level, TCCSD = T1 + T2, we arrive at the SR
CCSD method. We write CC equations (3) projected onto the singly- and
doubly-excited CSFs as follows

〈 + 〉 =Φ Φi H H T( ) ( )| [ , ]| ,1
3

0
0 0CCSD (6)

〈 + + + 〉 =Φ Φi H H T T H T T( ) ( ) ( ) ( )| [ , ] [[ , ], ]| ,2
3

0
4

0
1 3

0
0 0CCSD (7)

where now H CCSD = exp (–TCCSD) HN exp (TCCSD). Here we indicated by the
superscript (0) higher-than-pair clusters that couple these equations to the
rest of the CC chain. Setting these components to zero, T T3

0
4

0 0( ) ( )= = , we
obtain the CCSD equations.

Clearly, a physically more meaningful truncation of the CC chain can be
achieved when we use some approximate values for the T3

0( ) and T4
0( ) clusters.

In fact, should we use for T3
0( ) and T4

0( ) their FCI values, then solving so cor-
rected CCSD equations yields back the exact FCI result, as already pointed
out above. In the RMR CCSD we employ a modest-size MR CISD wave func-
tion as the external source for a small subset of important t i

( )3 and t i
( )4 am-

plitudes. The ground-state (or the lowest state of a given symmetry species)
MR CISD wave function can be easily expressed in the intermediately nor-
malized form relative to the reference |Φ0 〉 and subsequently cluster-
analyzed (see, e.g., refs27,57). Once these cluster amplitudes are known, we
compute the T3

0( ) and T4
0( ) dependent terms in Eqs (6) and (7) (for a

noniterative handling of the [[ , ], ]( )H T T1 3
0 term, see refs27,38,53) and correct

the absolute term in CCSD equations, which are then solved as in the stan-
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dard CCSD method. Note that the T3
0( ) and T4

0( ) dependent terms are evalu-
ated only once.

In order to take into account those triples that were not accounted for via
RMR CCSD, we employ the same perturbative procedure as in the standard
CCSD(T) method, while relying on the RMR CCSD amplitudes. Thus, each
triply-excited configuration | ( )Φi

3 〉 (relative to the reference |Φ0 〉) will con-
tribute to the correlation energy the amount e(i),

e i D i t t H
lk d

l
k

d l
k

k

( ) ( ) |( ) ( ) ( )=








 〈

∈=

−

∈
∑∑ ∑
M M1

2
1 2

2

Φ | | | .( ) ( ) ( )Φ Φ Φi i dH3 3 2〉 〈 〉 (8)

Here we designate the set of singly-, doubly-, triply-, and higher-excited
configurations relative to |Φ0 〉 by, respectively, M1, M2, M3, etc., while the
perturbation-theory-type denominator D(i) is given by the difference of
the diagonal matrix elements of the Fock operator (or, when |Φ0 〉 is a
Hartree–Fock reference, by the difference of orbital energies) that are associ-
ated with the triply-excited configuration | ( )Φi

3 〉.
Now, while in the standard SR CCSD(T) approach the correction due to

triples is given by the sum of the individual e(i) contributions for all triples
in M3, the appropriate correction for RMR CCSD should only involve those
triples that are not already accounted for via the external corrections in
RMR CCSD. In this way we avoid the overcounting of triple corrections
and, most importantly, consider only those triples that can be safely han-
dled by perturbation theory.

To be more specific, assume that the RMR CCSD, or the corresponding
MR CISD, M-dimensional model space P is spanned by a set MP of quasi-
degenerate configurations |Φi 〉, i = 0, 1, 2, …, M – 1,

MP = {| , | , , |Φ Φ Φ0 1 1〉 〉 〉−K M } , (9)

with |Φ0 〉 representing the SR CCSD reference. The external source MR CISD
wave function then involves, in addition to the references in MP, the set MQ
of singles and doubles relative to the configurations spanning the model
space P. Configurations in MQ thus span the first-order interacting space Q.
Clearly, all singles and doubles relative to |Φ0 〉, constituting the set {M1∪ M2},
are contained in the MR CISD space P ⊕ Q, which, moreover, contains also
configurations from M3, M4, etc., which are singles or doubles relative to
some configuration in MP, but higher-than-doubles relative to |Φ0 〉.
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Thus, generally,

{M1 ∪ M2} ⊂ {MP ∪ MQ} and {M3 ∪ M4} ∩ {MP ∪ MQ}≠ ∅ . (10)

We thus isolate those triples relative to |Φ0 〉 that are in {MP ∪ MQ}, constitut-
ing a subset Θ3,

Θ3 = {MP ∪ MQ} ∩ M3 , Θ3 ⊂ M3 , (11)

and consider only those triples from M3 that are not in {MP ∪ MQ}, forming
a subset Ω3,

Ω3 = M3 \ Θ3 . (12)

Thus, while SR CCSD(T) computes the correction for triples by relying on
the entire set M3,

ECCSD(T) = ECCSD + e i
i

( ) ,
∈
∑
M 3

(13)

only those triples that are not accounted for via RMR CCSD are taken into
account in RMR CCSD(T), namely

ERMR–CCSD(T) = ERMR–CCSD + e i
i

( ) .
∈
∑

Ω 3

(14)

RESULTS AND DISCUSSION

Very recently we have tested the performance of a truncated version of
RMR CCSD(T) by considering the PEC for the F2 molecule in a wide range
of internuclear separations as well as the equilibrium geometry and dissoci-
ation energies of nickel carbonyls56. Particularly in the latter case the use of
a truncated version of the method was essential when large basis sets were
employed.
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As a particularly delicate, yet rather unique, test we have considered the
singlet–triplet separation of the lowest-lying states of the isoelectronic C2
and BN molecules18. We recall that the standard SR CCSD(T) method fails
to predict the correct ground state of BN, and even the full CCSDT gives a
grossly inadequate value for the singlet–triplet separation energy19, while
RMR CCSD(T) predicts a correct ground state for both species and yields re-
alistic singlet–triplet separation energies.

In this paper we have thus decided to carry out a few additional tests,
addressing some difficult cases. For reasons of economy, we focus on the
equilibrium geometry properties, since the ability of RMR CCSD to account
for a nondynamic correlation – which arises when stretching genuine chemical
bonds – has been amply demonstrated earlier58. As already mentioned, the
utter failure of the standard CCSD(T) in this regard can also be efficiently hand-
led by the R- or CR-CCSD(T) and CR-CC(2,3) methods34,35 which, however,
provide slightly inferior results than CCSD(T) in the region of equilibrium
geometries. We thus wish to examine precisely the performance of RMR
CCSD(T) relative to that of SR CCSD(T) in this region of geometries.

Beryllium Dimer

We first turn our attention to the Be2 molecule, which is well-known to
represent a difficult case due to the near-degeneracy of the 2s and 2p
atomic orbitals in Be. In its ground state, it represents a weakly bound sys-
tem, in which both the σ bonding and antibonding MOs are doubly occu-
pied. Many papers have been devoted to this problem (see below), and only
a very limited experimental data are available. In a recently published paper
by Røeggen and Veseth63 that deals with the Be2 ground state potential, we
read: “... practically all methods failed in predicting a reliable interatomic
potential. Even though the more recent works (see below) yield results that
are more consistent, the question concerning the correct form of the poten-
tial cannot be considered settled.”

The Be2 ground state represents a particularly crucial test for CC-type
approaches in view of a very poor performance of both MP2 and SR CCSD
methods64–68 (see also ref.69). We thus compare our test results with both
the experimental70,71 and recent theoretical, highly-accurate, results,
‘girded’ by those based on the extended geminal model72 (EXGM), namely
on ref.73 and the more recent ref.63, referred to by the acronyms EXGM and
(r)EXGM, respectively. We also refer the reader to the former reference73 for
a very exhaustive list of 45 earlier papers on the subject. Thus, in addition
to the just given references, we compare in Table I our results with those
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listed below (in a chronological order), which are based on widely different
approaches: The MR-CISD (or MRD-CI, see ref.74) method75, MR averaged
quadratic CC (MR-AQCC) method76, all-electron SCF/valence-shell MR-CI
with effective core polarization potential (MC-SCF/MR-CI/CPP) method77,
MR internally-contracted CISD [(IC)MRSDCI] method78, averaged coupled-
pair functional (ACPF) with full valence CAS(4/8) method68 and, finally, an
explicitly-correlated r12-MR-CI method79. The last two very accurate poten-
tials were very recently used by Špirko80 to construct Be2 PEC by ‘morphing’
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TABLE I
A comparison of computed and experimental spectroscopic constants for Be2: Equilibrium
bond length Re (in Å), harmonic frequency ωe (in cm–1), rotational constant Be (in cm–1),
and dissociation energy De (in cm–1)

Method Basis Re ωe Be De

CCSD(T) cc-pVDZ 4.511 32.3 0.184 69

cc-pVTZ 2.493 240.7 0.602 698

cc-pVQZ 2.467 240.6 0.615 650

(2R)RMR CCSD(T) cc-pVDZ 4.478 32.4 0.186 58

cc-pVTZ 2.473 256.8 0.611 792

cc-pVQZ 2.453 252.2 0.621 716

EXGMa GTOa 2.47 224.7 – 812

MRD-CIb [s,p,d]b 2.498 258 0.603 766

MR-AQCCc WMRc 2.446 – – 864

MC-SCF/MR-CId GTO/CPPd 2.448 268.2 0.6213 893

(IC)MRSDCIe cc-pVQZ 2.41 293 – 1050

ACPFf cc-pV5Zf 2.4397 267.93 0.6285 944 ± 25

r12-MR-CIg [19s11p6d4f3g2h]g 2.443 269.9 0.6258 898 ± 8

(r)EXGMh [23s10p8d6f3g2h]h 2.452 – – 945 ± 15

RPCi 2.4382 277.4j – 921.5–922.9

Exp.k 2.45 ~250 0.618l 750–800m

Exp.n 2.450 275.8 0.623 790 ± 30

a From ref.73; b from ref.75; c from ref.76; d from ref.77; e from ref.78; f from ref.68; g from
ref.79; h from ref.63; i from ref.80; j using expansion82 E v x v y v= + − + + +ωe e e( ) ( ) ( )1

2
1
2

2 1
2

3 ;
k from ref.70; l B0 value; m given as 839 ± 10 cm–1 in ref.78; n from ref.71



them (i.e., by fitting them to experimental data) within the framework of
the reduced potential curve (RPC) approach of Jenč and Plíva81.

In addition to the standard CCSD(T) results, we present in Table I those
obtained with the two-reference (2R) RMR CCSD(T) method. The second
reference is a doubly-excited HOMO to LUMO CSF and the resulting 2R
space represents in this case a CMS involving both frontier MOs (i.e.,
HOMO and LUMO), which transform according to distinct symmetry spe-
cies, since we deal with a homonuclear molecule. We note, in particular, a
qualitative change in the equilibrium bond length when going beyond the
basis of a double-zeta quality (cc-pVDZ). Likewise, we find a very long equi-
librium bond length when using a 6-31G* basis with CCSD and, in fact,
even with the 6-311G* basis set. Correspondingly, the harmonic frequen-
cies indicate a very flat PEC in these cases, yielding ωe = 4.5 cm–1 for
CCSD(T)/6-31G* (correlating either 4 or all 8 electrons), and CCSD/6-311G*
value is also most unreasonable (22.2 cm–1). However, CCSD(T) gives al-
ready 177.3 cm–1 for the same basis set (correlating all 8 electrons). This
clearly indicates the importance of triples, as do the 6-311G* results ob-
tained by the 2R RMR CCSD and 2R RMR CCSD(T) methods, which give for
ωe the values 134.1 and 203.3 cm–1, respectively (again, correlating all 8
electrons).

The data obtained with correlation-consistent (cc) polarized (p) VXZ (X = D,
T, Q) basis sets using both CCSD(T) and 2R RMR CCSD(T) methods (Table I)
clearly indicate the improvement brought about by the latter method. The
2R RMR CCSD(T) bond length Re, and the related rotational constant Be,
obtained with the cc-pVQZ basis set agree well with the experimental val-
ues, and with highly accurate theoretical ones as well. The 2R RMR
CCSD(T) harmonic frequency values for both cc-pVTZ and cc-pVQZ basis
sets are also very reasonable, considering a rather large spread of both theo-
retical and experimental values. In any case, these values represent an im-
provement over the CCSD(T) ones, primarily due to the inclusion of
connected quadruples, which are doubles relative to the second reference,
and which are lacking in CCSD(T).

It is also worth noting that the computed results are rather sensitive to
the type of basis set atomic orbitals (AOs) that we employ. The results pre-
sented in Table I were obtained with Cartesian Gaussians. The use of
spherical Gaussians leads to a slightly shorter bond lengths Re, and corre-
spondingly larger harmonic frequencies ωe (for the cc-pVXZ, X = D, T, and
Q, basis sets, the 2R RMR CCSD(T) values for Re are 4.550, 2.331 and 2.422 Å,
and 31.1, 380.1 and 280.2 cm–1 for ωe, respectively, all 8 electrons being cor-
related).
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Finally, an account of connected quadruples significantly lowers the
dimer energy, so that the dissociation energies De, as obtained by the 2R
RMR CCSD(T) method, are considerably closer to the experimental values
than are the CCSD(T) ones, even though they lie below most of the theoret-
ical values. Again, in spite of a large scatter of both theoretical and experi-
mental results, 2R RMR CCSD(T) is an improvement over the standard
CCSD(T). Unfortunately, all quantities obtained with a basis of a double-
zeta quality are grossly inadequate, so that it would be meaningless to employ
them in a three-point extrapolation toward the complete basis set (CBS)
limit. In any case, the data presented in Table I must be regarded as a pre-
liminary test and we hope to carry out a much more detailed study in the
future.

Atomization Energies

As another test of triple-corrected RMR CCSD we consider atomization en-
ergies for several typical systems, involving several first row di- and
triatomics (Table II), as well as the more challenging MgO molecule (Table III).
Both zero-point energies (unscaled) and spin-orbit correlations have been
taken into account. It is well-known that CCSD(T) yields generally very
good and reliable results for atomization energies (cf. ref.15), so that it is
meaningful to check how RMR CCSD(T) fares in this case and how much
improvement can be achieved by using the RMR CCSD(T) method.

In Table II we present the standard CCSD and RMR CCSD results, as well
as the triple-corrected CCSD(T) and RMR CCSD(T) ones. For the high-spin
states, our calculations are based on the ROHF MOs. The results so obtained
differ only slightly from those relying on the UHF-based CC method. For
the HF molecule, whose ground state has a strong SR character, the differ-
ence between the CCSD and RMR CCSD results, as well as between the
CCSD(T) and RMR CCSD(T) ones, is very small. For the ground states of
other molecules that are included in Table II, the MR effects play already a
definite role, particularly for ozone. In general, the differences between the
triple-uncorrected values are larger than for the triple-corrected ones.
Indeed, the difference between the CCSD(T) and RMR CCSD(T) atomization
energies is very small, amounting to a few kJ/mol. The largest difference is
found for O3, in which case RMR CCSD(T) improves the CCSD(T) value by
6.3 kJ/mol. The RMR CCSD(T) values, which in all the cases considered
(Table II) are slightly larger than the CCSD(T) ones, lie always closer to the
experiment.
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The same conclusion holds for the MgO results (Table III), even though
in this case the RMR CCSD(T) values are slightly smaller than the CCSD(T)
ones. Yet again, however, the shift is in the right direction, RMR CCSD(T)
energies being closer to the experimental value of 241.7 cm–1, although the
very close agreement between the experiment and 4R RMR CCSD(T)/cc-pVQZ
result (241.7 vs 241.2 kJ/mol) must be considered as fortuitous.
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TABLE II
Atomization energies (0 K; in kJ/mol) computed with various CC methods and cc-pVTZ ba-
sis set

System CCSD RMR CCSD Na CCSD(T) RMR CCSD(T) Exp.b

HF 539.0 540.6 4 546.1 546.2 566.6

F2 108.7 128.7 2 136.4 139.8 154.5

CS 630.6 643.8 3 668.0 670.3 712.9

C2H 1000.5 1007.0 3 1032.8 1034.0 1073.4

HCN 1181.8 1190.1 3 1217.3 1218.9 1265.7

O3 422.2 475.2 2 533.4 539.7 595.9

a Number of references used in the RMR CCSD approach for a molecule. For atoms, SR
approach is employed, except for the C atom, in which case a 2-reference approach is used;
b from ref.83

TABLE III
Atomization energies (0 K; in kJ/mol) for MgO as obtained with SR CCSD(T) and 4R RMR
CCSD(T) methods and different basis sets. The second row indicates number of electrons
that are correlated

Method
CCSD(T) 4R RMR CCSD(T)

8-e 16-e 8-e 16-e

cc-pVDZ 166.9 167.1 166.3 166.4

cc-pVTZ 217.6 220.8 216.0 218.7

cc-pVQZ 237.8 243.9 235.5 241.2

Exp.a 241.7 241.7 241.7 241.7

a From ref.83



CONCLUSIONS

The recently formulated RMR CCSD(T) method61 clearly represents a useful
extension of the standard SR CCSD(T) approach, since it makes it possible
to overcome the near-degeneracy effects that are always present when
breaking genuine chemical bonds, or when handling certain open-shell sys-
tems. These quasidegeneracy effects lead to the breakdown, or at least to a
very poor performance, of the otherwise so successful and useful standard
CCSD(T) method. This breakdown is due to the presence of those triply-
excited CSFs that significantly contribute to the exact wave function, hav-
ing significant weights. These CSFs are thus responsible for the increased
role of the nondynamic correlation effects. It is thus highly desirable to
treat these CSFs via the ec RMR CCSD method (note that RMR CCSD also
accounts for important quadruples). Having accounted for these triply-
excited CSFs via external corrections to CCSD, we are thus left with those
triples (very large in number compared with those that require RMR CCSD
handling), which can be safely treated via perturbative (T)-type corrections,
as in the standard CCSD(T).

As mentioned earlier, RMR CCSD represents an alternative approach to
the renormalized R- or CR-CCSD(T) methods34,35, which also overcome the
CCSD(T) breakdown in quasidegenerate situations. Nonetheless, these
methods slightly underperform CCSD(T) in an important region of equilib-
rium geometries (see, e.g., ref.61). For this reason we have focused in this pa-
per on equilibrium properties, considering spectroscopic constants for a
very challenging beryllium dimer, where the standard CCSD method fails,
as well as on atomization energies, where CCSD(T) usually works very well.
It is thus gratifying to find that the RMR CCSD(T) method cannot only
overcome the shortcomings or failure of the standard CCSD(T) when
near-degeneracy effects become significant, but also represents an improve-
ment in the region of equilibrium geometries, where generally CCSD(T)
works very well. Even for molecules with a moderate MR character, the im-
provement of RMR CCSD(T) over CCSD(T) is of the order of a few kJ/mol.
Although these improvements are relatively small, they are nonetheless
larger than the accuracy of thermochemical data, and thus deserve to be
pursued further. We can thus conclude that the RMR CCSD(T) method does
achieve a better accuracy than CCSD(T), which is already considered to be
rendering results of the chemical accuracy and, moreover, is applicable to a
considerably wider range of molecular systems.
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